LITERATURE CITED

1. K. P. Stanyukovich, Nonsteady Motions of a Continuous Medium [in Russian], Nauka, Moscow (1971).

2. L. I. Sedov, Mechanics of a Continuous Medium [in Russian], Vol. 1, Nauka, Moscow (1976).

TEMPERATURES OF THE IMPULSE COMPRESSION OF IONIC CRYSTALS

V. A. Zhdanov and V. V. Polyakov

In [1, 2] a nonparametric calculation of impulse adiabatics of ionic crystals in B1 and B2 phases was given. The relations $p_H = p_H(V)$ obtained enable the temperature of the impulse compression T_H to be obtained for the crystals considered in both phases and enable the effect of the B1 \rightarrow B2 phase transition on the $T_H = T_H(p_H)$ curves to be investigated.

Taking the energy of the thermal vibrations in the form C_VT with constant heat capacity C_V and writing the internal energy using the impulse adiabatic equation we obtain the following equation for the temperature of the impulse compression [3]:

$$T_{H} = \left[\frac{1}{2} p_{H}(V)(V_{0} - V) + E_{0} - E_{x}(V)\right] / C_{V},$$
(1)

TABLE 1

Crystal	B1 phase		B2 phase	
	₽ _H , kbar	<i>т _Н</i> , •К	₽ _H , kbar	<i>т_{н'} •</i> К
LiF	64 175 335 569 915	319 366 502 792 1420	548 941 1550 2540	527 1490 3430 7330
NaF	54 115 202 325 501	329 389 505 788 1340	199 352 582 937 1503	$\begin{array}{r} 374\\998\\2\ 130\\4\ 150\\7\ 880\end{array}$
NaCl	12 31 56 91 136 198 282	308 337 384 473 643 944 1520	108 171 263 393 587 886 1370	533 100 1 850 3 140 5 380 9 140 15 940
KCl	27 50 80 120 176 253 362	313 343 452 627 970 1630 2650	56 99 163 255 394 614 979	362 715 1 370 2 400 4 280 7 430 13 280
ƘBr	$26 \\ 44 \\ 69 \\ 101 \\ 145 \\ 206$	317 351 444 614 989 1460	51 89 142 219 333 511	435 803 1 430 2 460 3 396 7 322

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 102-105, July-August, 1979. Original article submitted July 3, 1978.

471

UDC 539.21

TABLE 2

Crystal ·	Calculated for T = K•p _t , kbar	Calculation from the impulses adiabatic		Experi- ment [†] p _r ,
		P _t , kbar	<i>т</i> _t , •к	kbar
LiF	540	920	1400	_
NaF	150	270	700	240
NaCl	63	105	513	300
KCl	27	55	370	20
КBr	240	40	350	17
	1			

* From [5, 9].

[†]Data for NaF from [10] from impulse measurements, for NaCl from [6] and KCl and KBr from [11] from static measurements at room temperature.

where $E_X(V)$ is the energy of the lattice at absolute zero, and E_0 and V_0 are the energy and volume of the free crystal at room temperature. Table 1 shows the results of a calculation using Eq. (1) of the temperatures T_H for crystals of LiF, NaF, NaCl, KCl, KBr in B1 and B2 phases. To calculate the temperatures for the B1 lattices we used as $p_H(V)$ and $E_X(V)$ the functions defined in [1, 2] without including experimental data, while the quantities E_0 and V_0 were found from the energy minimum of $E_X(V)$. The temperatures of impulse compression for the B2 lattices were calculated from Eq. (1) in which the values of $p_H(V)$ and $E_X(V)$ were taken from [1, 2] for the B2 phase, while the initial characteristics of E_0 and V_0 were related to the B1 phase corresponding to the free crystal.

The results of the calculation of T_H for NaCl and KCl are shown in the figure, where it can be seen that in the case of NaCl up to 600 kbar there is good agreement between the $T_H = T_H(p_H)$ curve of the B1 phase and the experimental values of the temperatures measured in [4] (points 1 and 2 are taken from [4]). At a pressure of about 600 kbar the NaCl melts which causes a divergence between the calculated curve and the experimental data, which suffer a sharp discontinuity. Note that for NaCl the B1 \rightarrow B2 phase transition predicted by theory [5] and recorded in static measurements [6] do not appear in experiments on impulse compression [4, 7]. A crystal of KCl at a pressure of ~20 kbar suffers a transition to the B2 phase, expressed in the form of a discontinuity in the impulse adiabatic $p_H = p_H(V)$. As can be seen from Fig. 1 the experimental points [4], which relate to the dense phase, are very close to the calculated curve of the B2 phase. At a pressure of around 400 kbar KCl melts, producing a discontinuity in the temperature curve and disagreement with the calculation. In the case of a KBr crystal, which suffers a phase transition at a low pressure, the agreement between the calculated curves of the B2 phase and the experimental data [8], relating to the dense phase, is also good. We do not know the experimental values of T_H for other crystals. The results obtained were used to estimate the pressures p_t and the temperatures T_t of the phase transition. Since at the phase-transition point the pressures and temperatures of both phases are the same, the curves of $T_H = T_H(p_H)$ of the two phases should intersect, which enables one to estimate the quantities p_t and T_t . The results of these estimates for crystals of LiF, NaF, NaCl, KCl, KBr are shown in Table 2, where we also show the transition pressures calculated in [5, 9] at absolute zero, and the experimental values [6, 10, 11]. It follows from a comparison of the second and third columns of Table 2 that the B1 \rightarrow B2 transition pressures increase as the temperature increases. There is good correlation between the values of p_t calculated from the impulse adiabatics, as calculated in [5, 9], and the values found experimentally in [6, 10, 11].

LITERATURE CITED

- 1. V. A. Zhdanov and V. V. Polyakov, "Impulse adiabatics of ionic crystals", Fiz. Tverd. Tela, <u>17</u>, No. 11 (1975).
- 2. V. A. Zhdanov and V. V. Polyakov, "Impulse adiabatics of alkali halide crystals," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1976).
- 3. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).
- 4. S. B. Kormer, M. V. Sinitsyn, G. A. Kirillov, and V. D. Urlin, "Experimental determination of the temperatures of impulse-compression of NaCl and KCl and their melting curves up to pressures of 700 kbar," Zh. Eksp. Teor. Fiz., 48, No. 4 (1965).
- 5. V. A. Zhdanov and V. V. Polyakov, "The equations of the relation of ionic crystals," Fiz. Tverd. Tela, 17, No. 9 (1975).
- 6. L. Liu and W. A. Bassett, "Compression of Ag and phase transformation of NaCl," J. Appl. Phys., <u>44</u>, No. 4 (1973).
- L. V. Al'tshuler, L. V. Kuleshova, and M. N. Pavlovskii, "Dynamic compressibility, equations of state and electrical conductivity of sodium chloride at high pressures," Zh. Eksp. Teor. Fiz., <u>39</u>, No. 1 (1960).
- 8. G. A. Kirillov et al., "Experimental determination of the absorption coefficient of light and conductivity of impulse-compressed ionic crystals," FGV, No. 4 (1969).
- 9. V. A. Zhdanov and V. V. Polyakov, "Equations of state of alkali-halide crystals," Izv. Vyssh. Ucheb. Zaved., Fiz., No. 1 (1976).
- W. J. Carter, "Hugoniot equations of state of some alkali halides," High Temp.-High Pressures, 5, No. 3 (1973).
- S. N. Vaidya and G. C. Kennedy, "Compressibility of 27 halides to 45 kbar," J. Phys. Chem. Solids, <u>32</u>, No. 5 (1971).